index
Objects
BaseInput
@dataclass
class BaseInput()
Data class for event input
Attributes:
layernamestr - input layer name.source_rasterstr - name of source raster.tilestr - object path of raster data.workspacestr - input workspace.optionsProcessOptions - input process options.aurorabool - switch to send data to serverless. infrastructure or to legacy geoservers. Defaults to True.bufferint - search radius around centre. Defaults to 1.order_datestr, optional - filter the data on date.overwritebool - overwrite existing records. Defaults to False.
Functions
lambda_handler
@tracer.capture_lambda_handler
@logger.inject_lambda_context()
def lambda_handler(event: dict, context: dict) -> dict
Function to calculate Vector Statistics or Zonal Statistics. This function overlays vector data with raster tiles and generates the required statistics. These are defined by the LUT and can be adjusted by deploying the lambda with extra information.
Arguments:
eventdict - json/dictionarycontextdict - description
Returns:
dict- output event
Examples:
{
"aurora": true,
"workspace": "some-workspace",
"layername": "some-layername",
"source_raster": "some-source-raster-data",
"order_date": "2021-01-02",
"options": {
"append": true,
"crs": 3116,
"date": "2021-01-01",
"id_column": "tree_id",
"overwrite": false
},
"tile": "path/to/a/raster/tile-0-0.tiff"
}
update_handler
@tracer.capture_lambda_handler
@logger.inject_lambda_context()
def update_handler(event: dict, context: dict) -> dict | None
Function to update publication statistics on vector data in AWS DynamoDB
Arguments:
eventdict - input event.contextdict - description
Returns:
dict | None: output event with statistics attached.
Examples:
{
"date": "20210102",
"layertype": "layer:vector_tile",
"layername": "some-layer",
"workspace": "some-workspace"
"zone": 1337
}