index
Objects
BaseInput
class BaseInput(BaseModel)
Base input event as a dataclass.
Arguments:
BaseModelBaseModel - inherited from pydantic.
Attributes:
workspacestr - name of the workspace.layernamestr - name of the layer.datestr, optional - date in %YYYYmmDD format.bucketstr, optional - source bucket name, defaults to a target bucket.prefixstr, optional - output prefix to store files.outputstr, optional - output filename, entire object path is a concatenation of prefix/outputjob_idstr, optional - input job ID to search paths and datesorder_idint, optional - input order ID to search paths and dates
Functions
pull_geometries
def pull_geometries(workspace: str,
layername: str,
date: str | None = "") -> List[dict]
Function to extract geometries and attributes from RDS
Arguments:
workspacestr - name of the workspace.layernamestr - name of the layer.datestr, optional - date in YYYYmmDD or YYYY-mm-DD format. Defaults to "".
Returns:
list of dict- an array of records
Examples:
pull_geometries(
workspace="some-workspace",
layername="some-layer",
date="2021-02-01"
)
schema_constructor
def schema_constructor(workspace: str, layername: str) -> dict
Function to build a Fiona schema to export data.
Arguments:
workspacestr - name of the workspace.layernamestr - name of the layer.
Returns:
dict- a constructed fiona schema
Examples:
schema_constructor(
workspace="some-workspace",
layername="some-layer"
)
lambda_handler
@tracer.capture_lambda_handler
@logger.inject_lambda_context()
def lambda_handler(event: dict, context: dict) -> dict
Function to export geometries from a database table like RDS (AuroraDB).
Arguments:
eventdict - input event, must be convertable to BaseInput.contextdict - contains authentication information.
Returns:
dict- output event
Examples:
{
"workspace": "some-workspace",
"layername": "some-layer",
"date": "20210201",
"bucket": "some-bucket",
"prefix": "some/path/to/the/output",
"output": "output.shp",
"job_id": "12354646-jobid-234143fwwr4cw43",
"order_id": 1337
}